Search results for "FERM domain"

showing 3 items of 3 documents

Identification and relevance of the CD95-binding domain in the N-terminal region of ezrin.

2003

The CD95 (Fas/APO-1) linkage to the actin cytoskeleton through ezrin is an essential requirement for susceptibility to the CD95-mediated apoptosis in CD4+ T cells. We have previously shown that moesin was not involved in the binding to CD95. Here we further support the specificity of the ezrin/CD95 binding, showing that radixin did not bind CD95. The ezrin region specifically and directly involved in the binding to CD95 was located in the middle lobe of the ezrin FERM domain, between amino acids 149 and 168. In this region, ezrin, radixin, and moesin show 60-65% identity, as compared with the 86% identity in the whole FERM domain. Transfection of two different human cell lines with a green …

Moesinchemical and pharmacologic phenomenaApoptosismacromolecular substancesBiologyBiochemistryEzrinRadixinhemic and lymphatic diseasesHumansfas ReceptorMolecular BiologyActinBinding SitesFERM domainhemic and immune systemsCell BiologyTransfectionActin cytoskeletonPhosphoproteinsActinsCell biologyProtein Structure TertiaryCytoskeletal ProteinsMutationbiological phenomena cell phenomena and immunityBinding domainHeLa CellsProtein BindingSignal TransductionThe Journal of biological chemistry
researchProduct

NMR structure of a non-conjugatable, ADP-ribosylation associated, ubiquitin-like domain from Tetrahymena thermophila polyubiquitin locus.

2019

Abstract Background Ubiquitin-like domains (UbLs), in addition to being post-translationally conjugated to the target through the E1-E2-E3 enzymatic cascade, can be translated as a part of the protein they ought to regulate. As integral UbLs coexist with the rest of the protein, their structural properties can differ from canonical ubiquitin, depending on the protein context and how they interact with it. In this work, we investigate T.th-ubl5, a UbL present in a polyubiquitin locus of Tetrahymena thermophila, which is integral to an ADP-ribosyl transferase protein. Only one other co-occurrence of these two domains within the same protein has been reported. Methods NMR, multiple sequence al…

UBL DOMAINspektroskopiaGTPasePARKINBiochemistryPROTEIN BACKBONEACTIVATIONprotein-protein interaction0302 clinical medicineProtein-protein interactionUbiquitinmolekyylidynamiikkaNMR-spektroskopiaPolyubiquitinADP Ribose Transferases0303 health sciencesMultiple sequence alignmentbiologyFERM domainChemistryTetrahymenastructure-function relationshipFAMILYCell biologyRECEPTORSPost-translational modificationSignal TransductionBiophysicsSequence alignmentMolecular Dynamics SimulationUbiquitin-like domainsMECHANISMSProtein–protein interactionTetrahymena thermophila03 medical and health sciencesNMR spectroscopyADP-RibosylationubikitiinitMolecular BiologyNuclear Magnetic Resonance Biomolecular030304 developmental biologyMolecular dynamics simulationsStructure-function relationshipmolecular dynamics simulationsbiology.organism_classificationProtein Structure Tertiarypost-translational modificationProteasomeMOLECULAR-DYNAMICSbiology.protein1182 Biochemistry cell and molecular biologyproteiinitGTPASEProtein Processing Post-Translational030217 neurology & neurosurgeryFERM DOMAINBiochimica et biophysica acta. General subjects
researchProduct

Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex

2000

International audience; Defects in myosin VIIA are responsible for deafness in the human and mouse. The role of this unconventional myosin in the sensory hair cells of the inner ear is not yet understood. Here we show that the C-terminal FERM domain of myosin VIIA binds to a novel transmembrane protein, vezatin, which we identi®ed by a yeast two-hybrid screen. Vezatin is a ubiquitous protein of adherens cell±cell junctions, where it interacts with both myosin VIIA and the cadherin±catenins complex. Its recruitment to adherens junctions implicates the C-terminal region of a-catenin. Taken together, these data suggest that myosin VIIA, anchored by vezatin to the cadherin±catenins complex, cre…

MESH: Cytoskeletal ProteinsMESH: alpha CateninStereocilia (inner ear)[SDV]Life Sciences [q-bio]MESH: Amino Acid SequenceDeafnessMESH: CadherinsMiceMESH: Protein Structure Tertiary0302 clinical medicine[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesMyosinMESH: Hair Cells AuditoryMESH: AnimalsCytoskeleton0303 health sciencesFERM domainGeneral NeuroscienceMESH: Alternative SplicingArticlesCadherinsCell biologymedicine.anatomical_structureIntercellular Junctions[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyMyosin VIIaHair cellMESH: Membrane ProteinsMESH: DyneinsProtein BindingMESH: MutationMacromolecular SubstancesMolecular Sequence DataMESH: Deafnessmacromolecular substancesBiologyIn Vitro TechniquesMyosinsGeneral Biochemistry Genetics and Molecular BiologyCell LineAdherens junction03 medical and health sciencesHair Cells Auditorymedicineotorhinolaryngologic diseasesAnimalsHumansMESH: Myosin VIIaMESH: Protein BindingAmino Acid SequenceMolecular BiologyMESH: Mice030304 developmental biologyMESH: In Vitro TechniquesMESH: Molecular Sequence DataMESH: HumansGeneral Immunology and MicrobiologyCadherinDyneinsMembrane ProteinsMESH: Macromolecular SubstancesMESH: MyosinsActin cytoskeleton[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyProtein Structure TertiaryMESH: Cell LineAlternative SplicingCytoskeletal ProteinsMutationsense organs030217 neurology & neurosurgeryalpha Catenin[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyMESH: Intercellular Junctions
researchProduct